
FORCHEK(1L) FORCHEK(1L)

NAME

forchek � Fortran program checker

SYNOPSIS

forchek [�[no]declare] [�[no]division] [�[no]extern] [�[no]f77]

[�[no]library] [�[no]linebreak] [�[no]list] [�[no]portability]

[�[no]project] [�[no]sixchar] [�[no]symtab] [�[no]usage] [�[no]verbose]

[�columns=num] [�common=num] [�novice=num] [�output=str]

INTRODUCTION

Forchek (short for Fortran checker) is designed to detect certain errors in a Fortran program that

a compiler usually does not. Forchek is not primarily intended to detect syntax errors. Its pur-

pose is to assist the user in �nding semantic errors. Semantic errors are legal in the Fortran lan-

guage but are wasteful or may cause incorrect operation. For example, variables which are never

used may indicate some omission in the program; uninitialized variables contain garbage which

may cause incorrect results to be calculated; and variables which are not declared may not have

the intended type. Forchek is intended to assist users in the debugging of their Fortran program.

It is not intended to catch all syntax errors. This is the function of the compiler. Prior to using

Forchek, the user should verify that the program compiles correctly.

This document �rst summarizes how to invoke Forchek. That section should be read before

beginning to use Forchek. Later sections describe Forchek's options in more detail, give an

example of its use, and explain how to interpret the output. The �nal sections mention the limi-

tations and known bugs in Forchek.

INVOKING FORCHEK

Forchek is invoked through a command of the form:

$ forchek [-option -option ...] filename [filename ...]

(The brackets indicate something which is optional. The brackets themselves are not actually

typed.) Here options are command-line switches or settings, which control the operation of the

program and the amount of information that will be printed out. If no option is speci�ed, the

default action is to print error messages, warnings, and informational messages, but not the pro-

gram listing or symbol tables.

Each option begins with the '�' character. (On VAX/VMS systems you may use either '/' or

'�'.) The options are described at greater length in the next section.

Forchek options fall into two categories: switches, which are either true or false, and settings,

which have a numeric or string value. The name of a switch can be preceded by 'no' to turn it

o�: e.g. �nousage would turn o� the warnings about variable usage. Only the �rst 3 characters

of an option name (not counting the '�') need be provided. The switches which Forchek cur-

rently recognizes are:

�declare

Print a list of all identi�ers whose datatype is not explicitly declared. Default = no.

�division

Warn wherever division is done (except division by a constant). Default = no.

�extern

Warn if external subprograms which are invoked are never de�ned. Default = yes.

�f77 Warn about violations of the Fortran 77 standard. Default = no.

�library

Begin library mode: do not warn if subprograms in �le are de�ned but never used.

Default = no.

�linebreak

Treat linebreaks in continued statements as space. Default = yes.

21 August 1991 -1-

FORCHEK(1L) FORCHEK(1L)

�list Print source listing of program. Default = no.

�portability

Warn about non-portable usages. Default = no.

�project

Create project �le (see explanation below). Default = no.

�sixchar

List any variable names which clash at 6 characters length. Default = no.

�symtab

Print out symbol table. Default = no.

�usage

Warn if variables not used, etc. Default = yes.

�verbose

Produce full amount of output. Default = yes.

There are four settings:

�columns=n

Set maximum line length to n columns. (Beyond this is ignored.) Max is 132. Default =

72.

�common=n

Level of strictness in checking COMMON blocks. Min is 0 (no checking). Max is 3 (must

be identical). Default = 3.

�novice=n

Set novice level, which controls certain types of warnings. Min is 1 (tyro). Max is 5

(wizard). Default = 1.

�output=�lename

Send output to the given �le. Default is to send output to the screen. (Default �lename

extension is . lis).

When more than one option is used, they should be separated by a blank space. No blank spaces

may be placed around the equals (=) in a setting. Forchek "?" will produce a list of all options

and settings.

When giving a name of an input �le, the extension is optional. If no extension is given, Forchek

will �rst look for a project �le with extension . prj and will use that if it exists. If not, then

Forchek will look for a Fortran source �le with the extension . for for VMS systems, . f for Unix

systems. More than one �le name can be given to Forchek, and it will process the modules in all

�les as if they were in a single �le.

If no �lename is given, Forchek will read input from the standard input.

FORCHEK OPTIONS

This section provides a more detailed discussion of Forchek command-line options. Options and

�lenames may be interspersed on a command line. Each option remains in e�ect from the point it

is encountered until it is overridden by a later option. Thus for example, the listing may be sup-

pressed for some �les and not for others.

The option names in the following list are in alphabetical order.

�columns=n

Set maximum line length to n columns. (Beyond this is ignored.) This setting is provided

to allow checking of programs which may violate the Fortran standard limit of 72 columns

for the length of a line. According to the standard, all characters past column 72 are

ignored. This setting does not a�ect the reporting of overlength lines under the �f77

option. Max is 132. Default = 72.

21 August 1991 -2-

FORCHEK(1L) FORCHEK(1L)

�common=n

This setting varies the strictness of checking of COMMON blocks. Level 3 is the strictest:

it requires that in each declaration of a given COMMON block, corresponding variables

agree in data type and (if arrays) size and number of dimensions. Levels 1 and 2 require

only that corresponding memory locations agree in data type. The di�erence between

Levels 1 and 2 is that Level 2 warns if the blocks are not equal in total length, while Level

1 does not. Level 0 suppresses all checking. Default = 3.

�declare

If this
ag is set, all identi�ers whose datatype is not declared in each module will be

listed. This
ag is useful for helping to �nd misspelled variable names, etc. The same

listing will be given if the module contains an IMPLICIT NONE statement. Default =

no.

�division

This switch is provided to help users spot potential division by zero problems. If this

switch is selected, every division except by a constant will be
agged. (It is assumed that

the user is intelligent enough not to divide by a constant which is equal to zero!) Default

= no.

�extern

Causes Forchek to report whether any subprograms invoked by the program are never

de�ned, or are multiply de�ned. Ordinarily, if Forchek is being run on a complete pro-

gram, each subprogram other than the intrinsic functions should be de�ned once and only

once somewhere. Turn o� this switch if you just want to check a subset of �les which

form part of a larger complete program, or to check all at once a number of unrelated �les

which might each contain an unnamed main program. Subprogram arguments will still be

checked for correctness. Default = yes.

�f77 Use this
ag to catch language extensions which violate the Fortran 77 standard. Such

extensions may cause your program not to be portable. Examples include the use of

underscores in variable names; variable names longer than six characters; statement lines

longer than 72 characters; and nonstandard statements such as the DO ... ENDDO

structure. Forchek does not report on the use of lowercase letters. Default=no.

�library

This switch is used when a number of subprograms are contained in a �le, but not all of

them are used by the application. Normally, Forchek warns you if any subprograms are

de�ned but never used. This switch will suppress these warnings. Default = no.

�linebreak

Normally, when scanning a statement which is continued onto the next line, Forchek

treats the end of the line as a space. This behavior is the same as for Pascal and C, and

also corresponds to how humans normally would read and write programs. However,

occasionally one would like to use Forchek to check a program in which identi�ers and

keywords are split across lines, for instance programs which are produced using a prepro-

cessor. Choosing the option �nolinebreak will cause Forchek to skip over the end of

line and also any leading space on the continuation line (from the continuation mark up

to the �rst nonspace character). Default = yes, i.e. treat linebreaks as space.

Note that in nolinebreak mode, if token pairs requiring intervening space (for instance,

GOTO 100) are separated only by a linebreak, they will be rejoined.

Also, tokens requiring more than one character of lookahead for the resolution of ambigui-

ties must not be split across lines. In particular, a complex constant may not be split

across a line.

�list Speci�es that a listing of the Fortran program is to be printed out with line numbers. If

Forchek detects an error, the error message follows the program line with a caret (^)

specifying the location of the error. If no source listing was requested, Forchek will still

21 August 1991 -3-

FORCHEK(1L) FORCHEK(1L)

print out any line containing an error, to aid the user in determining where the error

occurred. Default = no.

�novice=n

This setting controls certain messages about conditions which are likely to be errors for

novice programmers, but which are often intentional by more sophisticated programmers.

Some of these warnings deal with cases in which Forchek suspects that what appears to

be a function is intended to be an array, which the user forgot to declare in a DIMEN-

SION statement. Since a function invocation and an array reference are identical in syn-

tax, undeclared arrays are interpreted by the Fortran compiler and by Forchek as func-

tions. Novice users are often confused by the messages which result. Forchek attempts

to remedy this confusion. Default level = 1.

The novice levels are given below. The warning corresponding to each number will be

suppressed if the novice level is set to greater than that value.

1. Warn if arrays passed as arguments to a subprogram do not match the corresponding

dummy arguments in both number of dimensions and size. Exception: if the declared

size of the dummy array is 1 or if it is dimensioned with a dummy variable, only the

number of dimensions will be checked.

2. Warn the user if any argument of a subprogram appears to be a function. This warn-

ing is suppressed if the dummy argument is declared in an EXTERNAL statement.

Novice programmers seldom pass functions as arguments of a subprogram, so it is

more likely that such an argument was intended to be an array, but was not dimen-

sioned.

3. If a function was invoked but never de�ned, advise the user that it may be an array

which was not dimensioned. This warning is suppressed if the function is declared in

an EXTERNAL or INTRINSIC statement in any module of the program. This warn-

ing is completely suppressed by the �noextern option.

4. Warn if a function has side e�ects: i.e. if it modi�es any of its arguments, or modi-

�es a variable in COMMON . Ideally, a function has no side e�ects, and acts only by

computing a value based on its arguments, whereas a subroutine normally acts

through side e�ects. Advanced programmers sometimes wish to combine the features

of a subroutine and a function in a single module.

�output=�lename

This setting is provided for convenience on systems which do not allow easy redirection of

output from programs. When this setting is given, the output which normally appears on

the screen will be sent instead to the named �le. Note, however, that operational errors

of Forchek itself (e.g. out of space or cannot open �le) will still be sent to the screen.

The extension for the �lename is optional, and if no extension is given, the extension . lis

will be used.

�portability

Forchek will give warnings for a variety of non-portable usages. These include the use of

tabs except in comments or inside strings, the use of hollerith constants, and the equiva-

lencing of variables of di�erent data types. This option does not produce warnings for

violations of the Fortran 77 standard, which may also cause portability problems. To

catch those, use the �f77 option. Default = no.

�project

Forchek will create a project �le from each source �le that is input while this
ag is in

e�ect. The project �le will be given the same name as the input �le, but with the exten-

sion . f or . for replaced by . prj . (If input is from standard input, the project �le is

named forchek. prj .) Default = no.

A project �le contains a summary of information from the source �le, for use in checking

agreement among FUNCTION , SUBROUTINE , and COMMON block usages in other

21 August 1991 -4-

FORCHEK(1L) FORCHEK(1L)

�les.

It allows incremental checking, which saves time whenever you have a large set of �les

containing shared subroutines, most of which seldom change. You can run Forchek once

on each �le with the �project
ag set, creating the project �les. Usually you would also

set the �library and �noextern
ags at this time, to suppress messages relating to con-

sistency with other �les. Only error messages pertaining to each �le by itself will be

printed at this time. Thereafter, run Forchek without these
ags on all the project �les

together, to check consistency among the di�erent �les. All messages internal to the indi-

vidual �les will now be omitted. Only when a �le is altered will a new project �le need to

be made for it.

The information saved in the project �le consists of all subprogram declarations, all sub-

program invocations not resolved by declarations in the same �le, and one instance of

each COMMON block declaration. Thus project �les contain only information for check-

ing agreement between �les. This means that a project �le is of no use if all modules of

the complete program are contained in a single �le.

Naturally, when the �project
ag is set, Forchek will not read project �les as input.

Here is an example of how to use the Unix make utility to automatically create a new

project �le each time the corresponding source �le is altered, and to check the set of �les

for consistency. The example assumes that a macro OBJS has been de�ned which lists all

the names of object �les to be linked together to form the complete executable program.

tell make what a project file suffix is

.SUFFIXES: .prj

tell make how to create a .prj file from a .f file

.f.prj:

forchek -project -noextern -library $<

set up macro PRJS containing project filenames

PRJS= $(OBJS:.o=.prj)

"make check" will check everything that has been changed.

check: $(PRJS)

forchek $(PRJS)

�sixchar

One of the goals of the Forchek program is to help users to write portable Fortran pro-

grams. One potential source of nonportability is the use of variable names that are longer

than six characters. Some compilers just ignore the extra characters. This behavior could

potentially lead to two di�erent variables being considered as the same. For instance,

variables named AVERAGECOST and AVERAGEPRICE are the same in the �rst six

characters. If you wish to catch such possible con
icts, use this
ag. Default = no.

�symtab

A symbol table will be printed out for each module, listing all identi�ers mentioned in the

module. This table gives the name of each variable, its datatype, and the number of

dimensions for arrays. An asterisk (*) indicates that the variable has been implicitly

typed, rather than being named in an explicit type declaration statement. The table also

lists all subprograms invoked by the module, all COMMON blocks declared, etc. Default

= no.

�usage

This switch is on by default. It causes Forchek to list all variables which may be used

before they are initialized, or which are given a value but never subsequently used, or

which are declared but never used. Sometimes Forchek makes a mistake about this.

Usually it errs on the side of giving a warning where no problem exists, but in rare cases

21 August 1991 -5-

FORCHEK(1L) FORCHEK(1L)

it will fail to warn where the problem does exist. See the section on bugs for examples. If

variables are equivalenced, the rule used by Forchek is that a reference to any variable

implies the same reference to all variables it is equivalenced to. Default = yes.

�verbose

This option is on by default. Turning it o� reduces the amount of output relating to nor-

mal operation, so that error messages are more apparent. This option is provided for the

convenience of users who are checking large suites of �les. The eliminated output includes

the names of project �les, and the message reporting that no syntax errors were found.

(Some of this output is turned back on by the �list and �symtab options.) Default =

yes.

CHANGING THE DEFAULTS

Forchek includes a mechanism for changing the default values of all options by de�ning environ-

ment variables. When Forchek starts up, it looks in its environment for any variables whose

names are composed by pre�xing the string "FORCHEK " onto the uppercased version of the

option name (the quote marks are not part of the name.) If such a variable is found, its value is

used to specify the default for the corresponding switch or setting. In the case of settings (for

example, the novice level) the value of the environment variable is read as the default setting

value. In the case of switches, the default switch will be taken as true or "YES" unless the envi-

ronment variable has the value "0" or "NO" (again, the quotes are not part of the value). Of

course, command-line options will override these defaults the same way as they override the built-

in defaults.

Note that the environment variable name must be constructed with the full-length option name,

which must be in uppercase. For example, to make Forchek print a source listing by default, set

the environment variable "FORCHEK LIST" to "1" or "YES" or anything other than "0" or

"NO". The names "FORCHEK LIS" (not the full option name) or "forchek list" (lower case)

would not be recognized.

Here are some examples of how to set environment variables on various systems. For simplicity,

all the examples set the default �list switch to "yes."

1. Unix, Bourne shell: $ FORCHEK LIST=YES $ export FORCHEK LIST

2. Unix, C shell: % setenv FORCHEK LIST YES

3. VAX/VMS: $ DEFINE FORCHEK LIST YES

4. MSDOS: $ SET FORCHEK LIST=YES

AN EXAMPLE

The following simple Fortran program illustrates the messages given by Forchek. The program is

intended to accept an array of test scores and then compute the average for the series.

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

C DATE: MAY 8, 1989

C Variables:

C SCORE -> an array of test scores

C SUM -> sum of the test scores

C COUNT -> counter of scores read in

C I -> loop counter

REAL FUNCTION COMPAV(SCORE,COUNT)

INTEGER SUM,COUNT,J,SCORE(5)

DO 30 I = 1,COUNT

SUM = SUM + SCORE(I)

30 CONTINUE

COMPAV = SUM/COUNT

END

21 August 1991 -6-

FORCHEK(1L) FORCHEK(1L)

PROGRAM AVENUM

C

C MAIN PROGRAM

C

C AUTHOR: LOIS BIGBIE

C DATE: MAY 15, 1990

C

C Variables:

C MAXNOS -> maximum number of input values

C NUMS -> an array of numbers

C COUNT -> exact number of input values

C AVG -> average returned by COMPAV

C I -> loop counter

C

PARAMETER(MAXNOS=5)

INTEGER I, COUNT

REAL NUMS(MAXNOS), AVG

COUNT = 0

DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)

COUNT = COUNT + 1

80 CONTINUE

100 AVG = COMPAV(NUMS, COUNT)

END

The compiler gives no error messages when this program is compiled. Yet here is what happens

when it is run:

$ run average

70

90

85

<EOF>

$

What happened? Why didn't the program do anything? The following is the output from

Forchek when it is used to debug the above program:

$ forchek -list -symtab average

FORCHEK Version 2.4 August 1991

File average.f:

1 C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

2 C DATE: MAY 8, 1989

3

4 C Variables:

5 C SCORE -> an array of test scores

6 C SUM -> sum of the test scores

7 C COUNT -> counter of scores read in

8 C I -> loop counter

9

10 REAL FUNCTION COMPAV(SCORE,COUNT)

11 INTEGER SUM,COUNT,J,SCORE(5)

12

21 August 1991 -7-

FORCHEK(1L) FORCHEK(1L)

13 DO 30 I = 1,COUNT

14 SUM = SUM + SCORE(I)

15 30 CONTINUE

16 COMPAV = SUM/COUNT

^

Warning near line 16 col 20: integer quotient expr converted to real

17 END

18

Module COMPAV: func: real

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims

COMPAV real COUNT intg I intg* J intg

SCORE intg 1 SUM intg

* Variable not declared. Type has been implicitly defined.

Variables declared but never referenced in module COMPAV:

J

Variables may be used before set in module COMPAV:

SUM

19

20 PROGRAM AVENUM

21 C

22 C MAIN PROGRAM

23 C

24 C AUTHOR: LOIS BIGBIE

25 C DATE: MAY 15, 1990

26 C

27 C Variables:

28 C MAXNOS -> maximum number of input values

29 C NUMS -> an array of numbers

30 C COUNT -> exact number of input values

31 C AVG -> average returned by COMPAV

32 C I -> loop counter

33 C

34

35 PARAMETER(MAXNOS=5)

36 INTEGER I, COUNT

37 REAL NUMS(MAXNOS), AVG

38 COUNT = 0

39 DO 80 I = 1,MAXNOS

40 READ (5,*,END=100) NUMS(I)

41 COUNT = COUNT + 1

42 80 CONTINUE

43 100 AVG = COMPAV(NUMS, COUNT)

44 END

21 August 1991 -8-

FORCHEK(1L) FORCHEK(1L)

Module AVENUM: prog

External subprograms referenced:

COMPAV: real*

Variables:

Name Type Dims Name Type Dims Name Type Dims Name Type Dims

AVG real COUNT intg I intg MAXNOS intg*

NUMS real 1

* Variable not declared. Type has been implicitly defined.

Variables set but never used in module AVENUM:

AVG

0 syntax errors detected in file average.f

1 warning issued in file average.f

Subprogram COMPAV: argument data type mismatch

at position 1:

Dummy type intg in module COMPAV line 10 file average.f

Actual type real in module AVENUM line 43 file average.f

According to Forchek, the program contains variables which may be used before they are

assigned an initial value, and variables which are not needed. Forchek also warns the user that

an integer quotient has been converted to a real. This may assist the user in catching an unin-

tended roundo� error. Since the �symtab
ag was given, Forchek prints out a table containing

identi�ers from the local module and their corresponding datatype and number of dimensions.

Finally, Forchek warns that the function is not used with the proper type of arguments.

With Forchek's help, we can debug the program. We can see that there were the following

errors:

1. SUM and COUNT should have been converted to real before doing the division.

2. SUM should have been initialized to 0 before entering the loop.

3. AVG was never printed out after being calculated.

4. NUMS should have been declared INTEGER instead of REAL.

We also see that I , not J , should have been declared INTEGER in function COMPAV . Also,

MAXNOS was not declared as INTEGER, and COMPAV as REAL, in program AVENUM .

These are not errors, but they may indicate carelessness. As it happened, the default type of

these variables coincided with the intended type.

Here is the corrected program, and its output when run:

C AUTHORS: MIKE MYERS AND LUCIA SPAGNUOLO

C DATE: MAY 8, 1989

C

C Variables:

C SCORE -> an array of test scores

C SUM -> sum of the test scores

C COUNT -> counter of scores read in

21 August 1991 -9-

FORCHEK(1L) FORCHEK(1L)

C I -> loop counter

C

REAL FUNCTION COMPAV(SCORE,COUNT)

INTEGER SUM,COUNT,I,SCORE(5)

C

SUM = 0

DO 30 I = 1,COUNT

SUM = SUM + SCORE(I)

30 CONTINUE

COMPAV = FLOAT(SUM)/FLOAT(COUNT)

END

C

C

PROGRAM AVENUM

C

C MAIN PROGRAM

C

C AUTHOR: LOIS BIGBIE

C DATE: MAY 15, 1990

C

C Variables:

C MAXNOS -> maximum number of input values

C NUMS -> an array of numbers

C COUNT -> exact number of input values

C AVG -> average returned by COMPAV

C I -> loop counter

C

C

INTEGER MAXNOS

PARAMETER(MAXNOS=5)

INTEGER I, NUMS(MAXNOS), COUNT

REAL AVG,COMPAV

COUNT = 0

DO 80 I = 1,MAXNOS

READ (5,*,END=100) NUMS(I)

COUNT = COUNT + 1

80 CONTINUE

100 AVG = COMPAV(NUMS, COUNT)

WRITE(6,*) 'AVERAGE =',AVG

END

$ run average

70

90

85

<EOF>

AVERAGE = 81.66666

$

With Forchek's help, our program is a success!

INTERPRETING THE OUTPUT

Forchek will print out four main types of messages. They are portability warnings, other warn-

ings, informational messages, and syntax errors. Portability warnings specify nonstandard usages

that may not be accepted by other compilers. Other warning messages report potential errors

21 August 1991 -10-

FORCHEK(1L) FORCHEK(1L)

that are not normally
agged by a compiler. Informational messages consist of warnings which

may assist the user in the debugging of their Fortran program.

Syntax errors are violations of the Fortran language. The user should have already eliminated

these by using the Fortran compiler. Forchek does not detect all syntax errors. Generally,

Forchek only does as much syntactic error checking as is necessary in order for it to work prop-

erly.

If Forchek gives you a syntax error message when the compiler does not, it is probably because

your program contains an extension to standard Fortran which is accepted by the compiler but

not by Forchek. On a VAX/VMS system, you can use the compiler option /STANDARD to cause

the compiler to accept only standard Fortran. On most Unix systems, this can be accomplished

by setting the
ag �ansi.

Most error messages are self-explanatory. Those which need a brief explanation are listed below.

Please note that any error messages which begin with oops refer to technical conditions and indi-

cate bugs in Forchek or that its resources have been exceeded.

The following messages warn about portability or nonstandard usages:

Nonstandard format item

Forchek will
ag nonstandard items in a FORMAT statement which may not be compat-

ible with other systems.

characters past 72 columns

A statement has been read which has nonblank characters past column 72. Standard For-

tran ignores all text in those columns, but many compilers do not. Thus the program

may be treated di�erently by di�erent compilers.

Warning: �le contains tabs. May not be portable.

Forchek expands tabs to be equivalent to spaces up to the next column which is a multi-

ple of 8. Some compilers treat tabs di�erently, and also it is possible that �les sent by

electronic mail will have the tabs converted to blanks in some way. Therefore �les con-

taining tabs may not be compiled correctly after being transferred. Forchek does not

give this message if tabs only occur within comments or strings.

nonstandard type usage in expression

The program contains an operation such as a logical operation between integers, which is

not standard, and may not be acceptable to some compilers.

Common block has mixed character and non-character variables

Common block has long data type following short data type

The ANSI standard requires that if any variable in a COMMON block is of type CHAR-

ACTER, then all other variables in the same COMMON block must also be of type

CHARACTER. Some compilers additionally require that if a COMMON block contains

mixed data types, all long types (namely DOUBLE PRECISION and COMPLEX) must

precede all short types (namely INTEGER, REAL, etc.).

The following messages are warning messages:

Integer quotient expr converted to real

integer quotient expr used in exponent

The quotient of two integers results in an integer type result, in which the fractional part

is dropped. If such an integer expression involving division is later converted to a real

datatype, it may be that a real type division had been intended. Likewise, if it is used as

an exponent, it is likely that a real type division was intended.

real truncated to intg

Forchek has detected an assignment statement which has a real expression on the right,

but an integer variable on the left. The fractional part of the real value will be lost. If

you explicitly convert the real expression to integer using the INT or NINT intrinsic

21 August 1991 -11-

FORCHEK(1L) FORCHEK(1L)

function, no warning will be printed. A similar message is printed if a double precision

expression is assigned to a real variable, etc.

Continuation follows comment or blank line

Forchek issues this warning message to alert the user that a continuation of a statement

is interspersed with comments, making it easy to overlook.

Possible division by zero

This message is printed out wherever division is done (except division by a constant), if

the �division option was selected.

NAME not set when RETURN encountered

The way that functions in Fortran return a value is by assigning the value to the name of

the function. This message indicates that the function was not assigned a value before

the point where a RETURN statement was found. Therefore it is possible that the func-

tion could return an unde�ned value.

Unknown intrinsic function

This message warns the user that a name declared in an INTRINSIC statement is

unknown to Forchek. Probably it is a nonstandard intrinsic function, and so the pro-

gram will not be portable. The function will be treated by Forchek as a user-de�ned

function.

The following messages are syntax errors:

syntax error

The parser, which analyzes the Fortran program into expressions, statements, etc., has

been unable to �nd a valid interpretation for some portion of a statement in the program.

If the compiler does not report a syntax error at the same place, the most common expla-

nations are: (1) use of a reserved word as an array or character variable (see Table 2 in

the section entitled "Limitations and Extensions"), or (2) use of an extension to ANSI

standard Fortran that is not recognized by Forchek.

No path to this statement

Forchek will detect statements which are ignored or by-passed because there is no fore-

seeable route to the statement. For example, an unnumbered statement (a statement

without a statement label), occurring immediately after a GOTO statement, cannot possi-

bly be executed.

Statement out of order.

Forchek will detect statements that are out of the sequence speci�ed for ANSI standard

Fortran-77. Table 1 illustrates the allowed sequence of statements in the Fortran lan-

guage. Statements which are out of order are nonetheless interpreted by Forchek, to pre-

vent "cascades" of error messages.

--

| | implicit

| parameter |---------------------

| | other specification

format |---------------|---------------------

and | | statement-function

entry | data |---------------------

| | executable

--

Table 1

The following messages are informational messages:

Declared but never referenced

Detects any identi�ers that were declared in your program but were never used, either to

be assigned a value or to have their value accessed. Variables in COMMON are excluded.

21 August 1991 -12-

FORCHEK(1L) FORCHEK(1L)

Variables used before set

This message indicates that an identi�er is used to compute a value prior to its initializa-

tion. Such usage may lead to an incorrect value being computed.

Variables may be used before set

Similar to used before set except that Forchek is not able to determine its status with

certainty. Forchek assumes a variable may be used before set if the �rst usage of the

variable occurs prior in the program text to its assignment.

Variables set but never used

Forchek will notify the user when a variable has been assigned a value, but the variable

is not otherwise used in the program. Usually this results from an oversight.

Type has been implicitly de�ned

Forchek will
ag all identi�ers that are not explicitly typed and will show the datatype

that was assigned through implicit typing. This provides support for users who wish to

declare all variables as is required in Pascal or some other languages. This message is

printed only when the �symtab option is in e�ect.

Identi�ers which are not unique in �rst six chars

Warns that two identi�ers which are longer than 6 characters do not di�er in �rst 6 char-

acters. This is for portability: they may not be considered distinct by some compilers.

This message is printed only if the �sixchar option was selected.

Subprogram NAME: varying length argument lists:

An inconsistency has been found between the number of dummy arguments (parameters)

a subprogram has and the number of actual arguments given it in an invocation.

Forchek keeps track of all invocations of subprograms (CALL statements and expressions

using functions) and compares them with the de�nitions of the subprograms elsewhere in

the source code. The Fortran compiler normally does not catch this type of error.

Subprogram NAME: argument data type mismatch at position n

The subprogram's n-th actual argument (in the CALL or the usage of a function) di�ers

in datatype from the n-th dummy argument (in the SUBROUTINE or FUNCTION dec-

laration). For instance, if the user de�nes a subprogram by

SUBROUTINE SUBA(X)

REAL X

and elsewhere invokes SUBA by

CALL SUBA(2)

Forchek will detect the error. The reason here is that the number 2 is integer, not real.

The user should have said

CALL SUBA(2.0)

When checking an argument which is a subprogram, Forchek must be able to determine

whether it is a function or a subroutine. The rules used by Forchek to do this are as fol-

lows: If the subprogram, besides being passed as an actual argument, is also invoked

directly elsewhere in the same module, then its type is determined by that usage. If not,

then if the name of the subprogram does not appear in an explicit type declaration, it is

assumed to be a subroutine; if it is explicitly typed it is taken as a function. Therefore,

subroutines passed as actual arguments need only be declared by an EXTERNAL state-

ment in the calling module, whereas functions must also be explicitly typed in order to

avoid generating this error message.

Subprogram invoked inconsistently

Here the mismatch is between the datatype of the subprogram itself as used and as

de�ned. For instance, if the user declares

INTEGER FUNCTION COUNT(A)

21 August 1991 -13-

FORCHEK(1L) FORCHEK(1L)

and invokes COUNT in another module as

N = COUNT(A)

without declaring its datatype, it will default to real type, based on the �rst letter of its

name. The calling module should have included the declaration

INTEGER COUNT

possibly it is an array which was not declared

This message refers to a function invocation or to an argument type mismatch, for which

the possibility exists that what appears to be a function is actually meant to be an array.

If the programmer forgot to dimension an array, references to the array will be interpreted

as function invocations. This message will be suppressed if the name in question appears

in an EXTERNAL or INTRINSIC statement.

Subprogram NAME: argument usage mismatch

Forchek detects a possible con
ict between the way a subprogram uses an argument and

the way in which the argument is supplied to the subprogram. The con
ict can be one of

two types, as outlined below.

Dummy arg is modi�ed, Actual arg is const or expr

A dummy argument is an argument as named in a SUBROUTINE or FUNCTION state-

ment and used within the subprogram. An actual argument is an argument as passed to

a subroutine or function by the caller. Forchek is saying that a dummy argument is

modi�ed by the subprogram, i.e. its value will be changed in the calling module. The

corresponding actual argument should not be a constant or expression, but rather a vari-

able or array element which can be legitimately assigned to.

Dummy arg used before set, Actual arg not set

Here a dummy argument may be used in the subprogram before having a value assigned

to it by the subprogram. The corresponding actual argument should have a value

assigned to it by the caller prior to invoking the subprogram.

Common block NAME: varying length

A COMMON block declared in di�erent subprograms has di�erent numbers of variables in

it in di�erent declarations. This is not necessarily an error, but it may indicate that a

variable is missing from the list.

Common block NAME: data type mismatch at position n

The n-th variable in the COMMON block di�ers in data type in two di�erent declarations

of the COMMON block. By default (common strictness level 3), Forchek is very picky

about COMMON blocks: the variables listed in them must match exactly by data type

and array dimensions. That is, the legal pair of declarations in di�erent modules:

COMMON /COM1/ A,B

and

COMMON /COM1/ A(2)

will cause Forchek to give warnings at strictness level 3. These two declarations are legal

in Fortran since they both declare two real variables. At strictness level 1 or 2, no warn-

ing would be given in this example.

LIMITATIONS AND EXTENSIONS

Forchek accepts ANSI standard Fortran-77 programs with the following exceptions:

Restrictions:

Forchek is sensitive to blank spaces. This encourages the user to use good programming

style. The rules are similar to Pascal or C where a blank space is required between

21 August 1991 -14-

FORCHEK(1L) FORCHEK(1L)

identi�ers or keywords and not allowed inside identi�ers or keywords. The following key-

words which occur in pairs may be written as either one or two words: DO WHILE or

DOWHILE , ELSE IF or ELSEIF , END DO or ENDDO , END IF or ENDIF , GO TO or

GOTO . Unlike Pascal and C, Forchek allows blanks inside numeric constants, except

within the exponent part of E and D form numbers. Also, if the �nolinebreak option is

selected, the end of line in continued statements is ignored.

Complex constants are subject to a special restriction: they may not be split across lines,

even in �nolinebreak mode.

The dummy arguments in statement functions are treated like ordinary variables of the

program. That is, their scope is the entire module, not just the statement function de�ni-

tion.

Some keywords and identi�ers are partially reserved. See Table 2 for details.

The following keywords may be freely used as variables:

ASSIGN BLOCK CALL CHARACTER

COMMON COMPLEX CONTINUE DIMENSION

DO DOUBLE ELSE END

ENDDO ENDIF ENTRY EXTERNAL

FUNCTION GO IMPLICIT INCLUDE

INTEGER INTRINSIC LOGICAL PAUSE

PRECISION PROGRAM REAL SAVE

STOP SUBROUTINE THEN TO

The following keywords may be used in scalar contexts only, for example, not as arrays or as char-

acter variables used in substring expressions.

ACCEPT BACKSPACE CLOSE DATA

DOWHILE ELSEIF ENDFILE EQUIVALENCE

FORMAT GOTO IF INQUIRE

OPEN PARAMETER PRINT READ

RETURN REWIND TYPE WRITE

WHILE

Table 2

Extensions:

Tabs are permitted, and translated into equivalent blanks which correspond to tab stops

every 8 columns. The standard does not recognize tabs. Note that some compilers allow

tabs, but treat them di�erently.

Lower case characters are permitted, and are converted internally to uppercase except in

strings. The standard speci�es upper case only, except in comments and strings.

Hollerith constants are permitted, in accordance with the ANSI Manual, appendix C.

They should not be used in expressions, or confused with datatype CHARACTER.

Statements may be longer than 72 columns provided that the setting �column was used

to increase the limit. According to the standard, all text from columns 73 through 80 is

ignored, and no line may be longer than 80 columns.

Variable names may be longer than six characters. The standard speci�es six as the max-

imum.

Variable names may contain underscores, which are treated the same as alphabetic letters.

The VAX version of Forchek also allows dollar signs in variable names, but not as the

initial character.

The DO ... ENDDO control structure is permitted. The syntax which is recognized is

according to either of the following two forms:

DO [label [,]] var = expr , expr [, expr]

21 August 1991 -15-

FORCHEK(1L) FORCHEK(1L)

...

END DO

or

DO [label [,]] WHILE (expr)

...

END DO

where square brackets indicate optional elements.

The ACCEPT and TYPE statements are permitted, with the same syntax as PRINT .

Statements may have any number of continuation lines. The standard allows a maximum

of 19.

Inline comments, beginning with an exclamation mark, are permitted.

The IMPLICIT NONE statement is supported. The meaning of this statement is that all

variables must have their data types explicitly declared. Rather than
ag the occurrences

of such variables with syntax error messages, Forchek waits till the end of the module,

and then prints out a list of all undeclared variables.

Data types INTEGER, REAL, COMPLEX , and LOGICAL are allowed to have an

optional length speci�cation in type declarations. For instance, REAL*8 means an 8-byte

oating point data type. The REAL*8 datatype is interpreted by Forchek as equivalent

to DOUBLE PRECISION . Forchek ignores length speci�cations on all other types.

The standard allows a length speci�cation only for CHARACTER data.

Forchek permits the INCLUDE statement, which causes inclusion of the text of the

given �le. The syntax is

INCLUDE '�lename'

When compiled for VMS, Forchek will assume a default extension of . for if no �lename

extension is given. Also for compatibility with VMS, the VMS version allows the quali�er

/[NO]LIST following the �lename, to control the listing of the included �le. There is no

support for including VMS text modules.

At this time, diagnostic output relating to items contained in include �les is minimal.

Only information about the location in the include �le is given. There is no traceback

giving the parent �le(s), although usually this can be inferred from the context.

NEW FEATURES

Here are the changes from Version 2.3 to Version 2.4:

1. Fixed bugs: the SAVE statement was incorrectly parsed, a CALL of a user function with the

same name as an intrinsic function assumed by default to refer to the intrinsic function, and

adjustable-size arrays passed as arguments were not correctly checked. Also, the usage of

variables in some I/O control-list speci�ers was handled incorrectly.

2. New options �declare, �f77, �linebreak and �verbose.

3. Allow embedded space in numeric constants.

4. Support ACCEPT , IMPLICIT NONE and INCLUDE statements.

5. Analyze EQUIVALENCE statements.

6. Common block checking levels 1 and 2.

7. Important: the project-�le format has been changed. Project �les created by Version 2.3 are

not compatible with Version 2.4, and will need to be remade.

Here are the changes from Version 2.2 to Version 2.3:

1. Three bugs were �xed: Version 2.2 crashed if a real constant exceeding the magnitude limit

was encountered; the computation of hash codes was not portable to 64-bit machines; and

spurious used-before-set messages were generated by statement functions. We thank Greg

21 August 1991 -16-

FORCHEK(1L) FORCHEK(1L)

Flint of Purdue University and Warren J. Wiscombe of NASA Goddard for pointing some of

these out.

2. Allow complex constants in expressions.

3. Allow DO ... ENDDO structure

4. Allow TYPE statement.

5. Allow underscores in variable names.

6. Allow inline comments.

7. Provide project-�le capability.

8. Suppress used-before-set messages for implied-do index (see Bugs section).

BUGS

Forchek still has much room for improvement. Your feedback is appreciated. We want to know

about any bugs you notice. Bugs include not only cases in which Forchek issues an error mes-

sage where no error exists, but also if Forchek fails to issue a warning when it ought to. Note,

however, that Forchek is not intended to catch all syntax errors. Also, it is not considered a bug

for a variable to be reported as used before set, if the reason is that the usage of the variable

occurs prior in the text to where the variable is set. For instance, this could occur when a GOTO

causes execution to loop backward to some previously skipped statements. Forchek does not

analyze the program
ow, but assumes that statements occurring earlier in the text are executed

before the following ones.

We especially want to know if Forchek crashes for any reason. It is not supposed to crash, even

on programs with syntax errors. Suggestions are welcomed for additional features which you

would �nd useful. Tell us if any of Forchek's messages are incomprehensible. Comments on the

readability and accuracy of this document are also welcome.

You may also suggest support for additional extensions to the Fortran language. These will be

included only if it is felt that the extensions are su�ciently widely accepted by compilers.

If you �nd a bug in Forchek, �rst consult the list of known bugs below to see if it has already

been reported. Also check the section entitled "Limitations and Extensions" above for restrictions

that could be causing the problem. If you do not �nd the problem documented in either place,

then send a report including

1. The operating system and CPU type on which Forchek is running.

2. The version of Forchek.

3. A brief description of the bug.

4. If possible, a small sample program showing the bug.

The report should be sent to either of the following addresses:

MONIOT@FORDMULC.BITNET

moniot@mary.fordham.edu

Highest priority will be given to bugs which cause Forchek to crash. Bugs involving incorrect

warnings or error messages may take longer to �x.

The following is a list of known bugs.

1. Bug: Functions which modify their arguments may cause used-before-set warning. For exam-

ple, A in the statement

X = FUN(A)

if A is not previously set. If FUN has the purpose of setting A, this situation will not be a

bug. Generally, however, it is not considered good style for functions to modify their argu-

ments, and so the warning may be to good purpose.

21 August 1991 -17-

FORCHEK(1L) FORCHEK(1L)

Prognosis: Probably will not be �xed anytime soon.

2. Bug: Used-before-set message is suppressed for any variable which is used as the loop index

in an implied-do loop, even if it was in fact used before being set in some earlier statement.

For example, consider J in the statement

WRITE(5,*) (A(J), J=1,10)

Here Forchek parses the I/O expression, A(J), where J is used, before it parses the implied

loop where J is set. Normally this would cause Forchek to report a spurious used-before-set

warning for J . Since this report is usually in error and occurs fairly commonly, Forchek sup-

presses the warning for J altogether.

Prognosis: A future version of Forchek is planned which will handle implied-do loops cor-

rectly.

3. Bug: Variables used (not as arguments) in statement-function subprograms do not have their

usage status updated when the statement function is invoked.

Prognosis: To be �xed in a future version of Forchek.

CONCLUSION

Forchek was designed by Dr. Robert Moniot, professor at Fordham University, College at Lin-

coln Center. During the academic year of 1988-1989, Michael Myers and Lucia Spagnuolo devel-

oped the program to perform the variable usage checks. During the following year it was aug-

mented by Lois Bigbie to check subprogram arguments and COMMON block declarations. Brian

Downing assisted with the implementation of the INCLUDE statement. Additional features will

be added as time permits.

We would like to thank Markus Draxler of the University of Stuttgart, Greg Flint of Purdue Uni-

versity, Phil Sterne of Lawrence Livermore National Laboratory, and Warren J. Wiscombe of

NASA Goddard for reporting some bugs in Versions 2.1 and 2.2. We also thank John Amor of

the University of British Columbia, Daniel P. Giesy of NASA Langley Research Center, Hugh

Nicholas of the Pittsburgh Supercomputing Center, Dan Severance of Yale University, and Larry

Weissman of the University of Washington for suggesting some improvements. Nelson H. F.

Beebe of the University of Utah kindly helped with the documentation, and pointed out several

bugs in Version 2.3. Reg Clemens of the Air Force Phillips Lab in Albuquerque and Fritz Keinert

of Iowa State University helped debug Version 2.4. We also thank Jack Dongarra for putting

Forchek into the Netlib library of publicly available software.

For further information, you may contact Dr. Robert Moniot at either of the following network

addresses:

MONIOT@FORDMULC.BITNET

moniot@mary.fordham.edu

This document is named forchek.man. The Forchek program can be obtained by sending the

message send forchek from fortran to the Internet address: netlib@ornl.gov . Installation

requires a C compiler for your computer.

21 August 1991 -18-

